The Spatial Dynamics of Droughts and Water Scarcity in England and Wales

Abstract

Water scarcity occurs when water demand exceeds natural water availability over a range of spatial and temporal scales. Though meteorological and hydrological droughts have been analyzed over large spatial scales, the impacts of water scarcity have typically been addressed at a catchment scale. Here we explore how droughts and water scarcity interact over a larger and more complex spatial domain, by combining climate, hydrological, and water resource system models at a national scale across England and Wales. This approach is essential in a highly connected and heterogeneous region like England and Wales, where we represent 80 different catchments; 70 different water resource zones; 16 water utility companies; and the water supply for over 50 million people. We find that if a reservoir’s storage is in its first percentile (i.e., the volume that is exceeded 99% of the time), then there is, on average, a 40% chance that reservoirs in neighboring catchments will also be at or below their first percentile storage volume. The coincidence of low reservoir storage decays relatively quickly, stabilizing after about 100–150 km, implying that if interbasin transfers are to be provided to enhance drought resilience, they will need to be at least this length. Based on a large ensemble of future climate simulations, we show that extreme droughts in precipitation, streamflow, and reservoir storage volume are projected to worsen in every catchment. The probability of a year with water use restrictions doubles by 2050 and is four times worse by 2100.

Publication
Water Resources Research
Barnaby Dobson
Barnaby Dobson
Imperial College London
Jim Hall
Jim Hall
Professor of Climate and Environmental Risk

Prof. Jim Hall FREng is Professor of Climate and Environmental Risks in the University of Oxford and Director of Research in the School of Geography and the Environment.